Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2021

A Statistical Analysis of Plasma Bubbles Observed by Swarm Constellation during Different Types of Geomagnetic Storms

Based on the observations of Ionospheric Bubble Index (IBI) data from the Swarm mission, the characteristics of plasma bubbles are investigated during different types of geomagnetic storms recorded from 2014 to 2020. The geometrical constellation of the Swarm mission enabled us to investigate the altitudinal profile of the IBIs during different activity levels in a statistical mean. Results show that the majority of IBIs associated with moderate storms are observed at low altitudes and the probability of observing IBIs at high altitudes (Swarm-B) increases with the increase in storm level. This is confirmed by observing the F2 layer peak height (hmF2) during super storm events at larger altitudes using COSMIC data. The maximum number of IBIs is recorded within the South Atlantic Anomaly (SAA) region with a long duration time and tends to increase only during dusk time. Both the large duration time and number of IBIs over the South Atlantic Anomaly (SAA) suggest that the gradient in the electron density and the depression in the magnetic field are the main factors controlling IBI events. Also, the IBIs at high altitudes are larger at sunset and at low altitudes pre-midnight. In addition, the occurrence of IBIs is always larger in the northern hemisphere than in the southern hemisphere irrespective of the type of storm, as well as during the summer months. Moreover, there is no correlation between the duration time of IBIs and both the altitudinal observation of the IBIs and the storm type. Seasonal occurrence of IBIs is larger during equinoxes and vice versa during solstices irrespective of both the type of storm and the altitude of the satellite. The large number of IBIs during equinoxes agrees with the previous studies, which expect that the large electron density is a developer of steeper ∇n. Large occurrences of super storm IBIs observed within the pre-midnight during summer and at sunset during equinoxes are a novel observation that needs further investigation. Also, the majority of IBIs are observed a few hours after geomagnetic substorms, which reflects the role of the Disturbance Dynamo Electric Field (DDEF) as a main driver of IBIs.

Hussien, Fayrouz; Ghamry, Essam; Fathy, Adel;

Published by: Universe      Published on: apr

YEAR: 2021     DOI: 10.3390/universe7040090

geomagnetic storm; ionospheric irregularity; plasma bubble; Swarm mission

Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations

This paper reports that plasma density depletions appearing at middle latitudes near sunrise survived until afternoon on 29 May 2017 during the recovery phase of a geomagnetic storm. By analyzing GPS data collected in Japan, we investigate temporal variations in the horizontal two-dimensional distribution of total electron content (TEC) during the geomagnetic storm. The SYM-H index reached −142 nT around 08 UT on 28 May 2017. TEC depletions extending up to approximately 38°N along the meridional direction appeared over Japan around 05 LT (LT = UT + 9 hours) on 29 May 2017, when TEC rapidly increased at sunrise due to the solar extreme ultraviolet (EUV) radiation. The TEC depletions appeared sequentially over Japan for approximately 8 hours in sunlit conditions. At 06 LT on 29 May, when the plasma depletions first appeared over Japan, the background TEC was enhanced to approximately 17 TECU, and then decreased to approximately 80\% of the TEC typical of magnetically quiet conditions. We conclude that this temporal variation of background plasma density in the ionosphere was responsible for the persistence of these plasma depletions for so long in daytime. By using the Naval Research Laboratory: Sami2 is Another Model of the Ionosphere (SAMI2), we have evaluated how plasma production and ambipolar diffusion along the magnetic field may affect the rate of plasma depletion disappearance. Simulation shows that the plasma density increases at the time of plasma depletion appearance; subsequent decreases in the plasma density appear to be responsible for the long-lasting persistence of plasma depletions during daytime. The plasma density depletion in the top side ionosphere is not filled by the plasma generated by the solar EUV productions because plasma production occurs mainly at the bottom side of the ionosphere.

Otsuka, Yuichi; Shinbori, Atsuki; Sori, Takuya; Tsugawa, Takuya; Nishioka, Michi; Huba, Joseph;

Published by: Earth and Planetary Physics      Published on:

YEAR: 2021     DOI: 10.26464/epp2021046

Ionosphere; GPS; ionospheric irregularity; plasma bubble; SAMI2

2015

The Morphology of Equatorial Plasma Bubbles - a review

Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

Kil, Hyosub;

Published by: Journal of Astronomy and Space Sciences      Published on: 03/2013

YEAR: 2015     DOI: 10.5140/JASS.2015.32.1.13

Equatorial ionosphere; irregularities; plasma bubble



  1